
Introduction to modular arithmetic S1

Diophantine Equations
Diophantus - born probably sometime between AD 201 and 215; died around 84 years old,

probably sometime between AD 285 and 299 was an Alexandrian Hellenistic mathematician.
Note the convention used throughout. A dot (.), unless at the end of a sentence, always stands

for multiplication, e.g., 3.2 = 6 (and not 3 point 2).
Consider the fraction 54

11 . This can be written as

54÷ 11 = 54/11 = 54

11
= 4

10

11
= 4 +

10

11
= 4.

11

11
+
10

11
=
44 + 10

11
=
54

11
.

But note that we can also write 54
11 as

54

11
= 5− 1

11
.

The point of doing this is to get the numerator of the fraction as small as possible. You can see
that the numerator 1 in 1

11 is smaller than the numerator in
10
11 . We shall use this idea often.

Oranges and Lemons

Example 1

Oranges cost 7c and lemons cost 5c. I spend a total of 26c. How many oranges and lemons did
I buy?
If x = number of oranges and y = number of lemons then

7x+ 5y = 26.

Can you guess a solution?

This is one equation in two variables and would therefore appear to have an infinite number of
solutions. Give x any value you like and you can solve and get a value for y, or vice versa.
But there is one unstated fact that is involved.
It is that the solution must be in integers - you cannot have, say, 2 34 oranges for example.This

makes solutions possible.

A reduction procedure.

Divide the equation by the smallest coeffi cient of the variables - which is 5, to get

x+
2x

5
+ y = 5 +

1

5

or x+
2x− 1
5

+ y = 0.

Now x and y are integers, so 2x−1
5 must be an integer. Let 2x−15 = z (an integer). Then we have

the equation
2x = 5z + 1.
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Divide the equation by the smallest coeffi cient of the variables - which is 2, to get

x = 2z +
z + 1

2
.

So then, again, x, z are integers so z+1
2 must be an integer. Let z+12 = t (an integer). Then we have

the equation
z = 2t− 1.

And now we are at an end. Starting with x and y, we can express each of these in terms of z,
but the equation 2x = 5z+1 did NOT have a coeffi cient of 1 for either variable so we had to go to
another equation, with another variable t, namely z = 2t+ 1. And here z has coeffi cient 1.
So now we can go backward, getting every variable in terms of t. Then, substituting for z

x = 2(2t− 1) + t = 5t− 2.

y =
26− 7x
5

=
26− 7(5t− 2)

5
=
40− 35t

5
= 8− 7t.

Now we can give t any integer value and the values of x and y we get will satisfy the original
equation 7x + 5y = 26. There are an infinite number of solutions, just by giving t various integer
values. This might result in some values of x and y being +ve and/or -ve.

For our problem, we do not want a negative number of oranges or lemons. Thus we require
x > 0 and y > 0. That is

x = 5t− 2 > 0
y = 8− 7t > 0.

From the second we must have t ≤ 1 and considering this in the first inequality we must have
t > 2

5 , so that
2
5 < t ≤ 1. This is only possible if t = 1. Then

x = 3

y = 1.

The solution is 3 oranges and 1 lemon.
CHECK

7.3 + 5.1 = 26 correct!

Example 2

Oranges now cost 97c and lemons 54c. A total of $32.25 is spent. How many oranges and lemons
are bought?
If x = number of oranges and y = number of lemons the relevant equation is

97x+ 54y = 3225.

We will divide by the smallest coeffi cient, 54. But let us be a bit clever here. On dividing by
54, we would usually write for the lhs x + 43x

54 . The coeffi cient, 43 of x is large - we would like to
have the smallest coeffi cient as possible - ideally, as we proceed we would like to see just 1x, that
is, just x. Instead now, let’s go just over 97 and subtract, as in
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2x− 11x
54 - clearly 11 is smaller than 43.

Dividing by 54 we have (trying to get a smaller coeffi cient of x in the fraction)

2x− 11x
54

+ y = 59 +
39

54

= 60− 15
54

where, simillarly. we have produced a smaller numerator 15 compared with 39.
Now taking − 11x54 over to the rhs we have the ‘fraction’

11x
54 −

15
54 ; but this must be an integer as

everything else in the equation is. So we put

11x− 15 = 54z (z integral)

Dividing by the smallest coeffi cient 11 we get

x− 1− 4

11
= 5z − z

11
.

Therefore, again the fraction ‘411 −
z
11
′ must be an integer. So put

4− z = 11t (t integral).

Then, with z = 4− 11t we get

x = 1 + 5(4− 11t) + t
= 21− 54t.

Again, to shorten the route of backward substitutions, substitute for x directly in the original
equation, to get y. We have

54y = −97(21− 54t) + 3225 = 97.54t+ 1188
y = 97t+ 22.

We now wish for positive numbers of oranges and lemons - that is, x > 0 and y > 0, so that

x = 21− 54t > 0
y = 97t+ 22 > 0.

If t ≥ 1, x will be -ve, and if t ≤ −1, y will be -ve. The first inequality means t ≤ 0, and the
second means t ≥ 0. The only solution occurs when t = 0 so that

x = 21 oranges

y = 22 lemons.

Exercise

Solve in integers the equations

3x− 6y + 16z = 1

2x+ 5y − 6z = 2.

Solve the first equation for x, y, z in terms of two variables. Use this in the second equation to
get x, y, z in terms of one variable. What +ve solutions are there, if any?
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Modular arithmetic
Ways of writing 22

7 ,

22÷ 7 = 22/7 = 22

7
= 3

1

7
= 3 +

1

7
= 3.

7

7
+
1

7
=
21

7
+
1

7
=
22

7
.

We can also think of 22 divided by 7, which goes in 3 times leaving a remainder of 1, that is

22 = 3.7 + 1.

Write this instead as
22 = 1 + 3.7.

We now introduce the notation of a congruence, from this example, by writing

22 ≡ 1(mod 7)

which means 22 - 1 is divisible by 7. The wording is, (we read it as): 22 is congruent to 1(mod 7).
Obviously we can add or subtract multiples of 7 to each side, since it will still be true that the

difference between left and right hand sides of the congruence is divisible by 7. Thus

29 ≡ 1(mod 7)

22 ≡ 15(mod 7)

99 ≡ 22(mod 7)

99 ≡ −13(mod 7)

16 ≡ 1(mod 7)

26 = 64 ≡ 1(mod 7)
36 = 729 ≡ 1(mod 7)
46 = 4096 ≡ 1(mod 7)
56 = 15625 ≡ 1(mod 7)
66 = 46656 ≡ 1(mod 7)

Does it seem strange/interesting to you that the same power (6) of these numbers all have a
remainder of 1 when divided by 7? Yet, for example, 33 is not congruent to 1(mod 4), nor is 23.
Why does this happen?

When we write
a ≡ b(modm)

we mean that a divided by m leaves a remainder of b. Written as an equation, rather than a
congruence, this is

a = b+ k.m where k is some integer (compare 22 = 1 + 3.7).

In mathematics, fractions, are called rational numbers.

4



We have the following notation for sets of numbers
N - set of natural numbers {0, 1, 2, . . .}
Z - set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
Q - set of rational numbers {pq | p, q ∈ Z, q 6= 0}
R - set of real numbers - generally defined by a ’Dedekind cut’on the real line of numbers
C - set of complex numbers {a+ bi | a, b ∈ R, i2 = −1}

In modular arithmetic we only deal with integers (numbers belonging to the set Z).
Observe the following

13 ≡ 7 (mod 3)

We read this as "13 is congruent to 7 mod 3". What this means is that 13 − 7 is divisible by 3.
That is, 13− 7 = 3k where k is some integer - or 13 = 7 + 3k.(k = 2)

Note that
13 ≡ 7 (mod 2)

also.
Note also that we can add or subtract multiples of 2 from either side if we wish. Thus

13 = 11 + 2 ≡ 7 (mod 2)

Writing in full form this is

11 + 2 = 7 + 2k1 where k1 is an integer

So, it is equally true that
11 = 7 + 2(k1 − 1)

so it is equally true

11 ≡ 7 (mod 2)

or also 11 ≡ 5 (mod 2)

or also 13 ≡ 3 (mod 2)

etc.

If an integer N is divisible by an integer m we have N = km where k is an integer. Putting this
in modular form we can write

N ≡ 0 (modm).

The integer m is called the modulus.
Examples of (A) adding congruences, (B) mulitplying both sides of a congruence by any integer,

(C) multiplying two (and hence any number) of congruences together. In all case the result is a
valid congruence.
We consider the congruences

20 ≡ 2(mod 6)

21 ≡ −3(mod 6)
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(A) Adding each side of the two congruences gives

41 ≡ −1(mod 6)

and indeed this is true. So we can add - or also subtract any number of congruences.
(B) Multipying the first congruence by, say, -5, gives

−100 ≡ −10(mod 6)

and this is a valid congruence.
(C) Multiplying the first and second congruences (left and right-hand sides) gives

420 ≡ −6(mod 6)

and this too is true as a congruence.
Simple proofs of these propositions are given next.

Proposition 1
In general notation, suppose

a ≡ b (modm), and

c ≡ d (modm)

Then we can add or subtract congruences, so that

a± c ≡ b± d (modm).

Proof:
We have

a = b+ k1m where k1 is an integer

c = d+ k2m where k2 is an integer

Adding or subtracting we have

a± c = b± d+ (k1 ± k2)m

which means
a± c ≡ b± d (modm).

Proposition 2
With the same notation as above if k is any integer, it is obvious that

ka ≡ kb (modm)

So we can multiply any congruence by any integer and it is still true.
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Proposition 3
With the same notation as above

ac ≡ bd (modm).

Proof:
We have, from above,

ac = bd+ (bk2 + dk1 + k1k2m)m

So in any case
ac ≡ bd (modm).

Can you make up a numerical example to illustrate props 1, 2 and 3?
In particular, if c = a and d = b, we have

a2 ≡ b2 (modm)

a3 ≡ b3 (modm)

. . .

an ≡ bn (modm)

Think for example of a as large and b as small. For instance

23 ≡ 3(mod 5)

so 279841 = 234 ≡ 81 ≡ 1mod(5)

We will develop this further, later.

Modular equations
Can we solve for x in the equation

17x ≡ 3 (mod 5)

This is the same as the congruence

15x+ 2x ≡ 2x ≡ 3 (mod 5).

Multiply the congruence by 3 on both sides, aiming to get a single x on the lhs

6x ≡ x ≡ 9 ≡ 4 (mod 5).

There we have the solution of the congruence, CHECK

17.4 = 68 ≡ 3 (mod 5).
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Example2 Oranges and lemons
We have the equation

97x+ 54y = 3225.

Write this as a congruence
97x ≡ 3225 (mod 54)

Use your calculator here to write

97x = 108x− 11x ≡ 60.54− 15 (mod 54)
or − 11x ≡ −15 (mod 54)
or 55x ≡ 75 (mod 54)

or x ≡ 21 (mod 54)

Therefore
x = 21 + 54t where t is some integer

Then substituting for x in the original equation 97x+ 54y = 3225 we get

54y = 1188− 97.54t
or y = 22− 97t.

Now again we require, x > 0, y > 0 so that

x = 21 + 54t > 0

y = 22− 97t > 0

For +ve (positive) solutions this is only possible if t = 0 whereupon

x = 21

y = 22.

CHECK
97.21 + 54.22 =?
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